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Freshwater wetlands are highly diverse, spatially heterogeneous, and seasonally
dynamic systems that present unique challenges to remote sensing. Maximum likeli-
hood and support vector machine-supervised classification were compared to map
wetland plant species distributions in a deltaic environment using high-resolution
WorldView-2 satellite imagery. The benefits of the sensor’s new coastal blue, yellow,
and red-edge bands were tested for mapping coastal vegetation and the eight-band
results were compared to classifications performed using band combinations and
spatial resolutions characteristic of other available high-resolution satellite sensors.
Unlike previous studies, this study found that support vector machine classification did
not provide significantly different results from maximum likelihood classification. The
maximum likelihood classifier provided the highest overall classification accuracy, at
75%, with user’s and producer’s accuracies for individual species ranging from 0% to
100%. Overall, maximum likelihood classification of WorldView-2 imagery provided
satisfactory results for species distribution mapping within this freshwater delta system
and compared favourably to results of previous studies using hyperspectral imagery,
but at much lower acquisition cost and greater ease of processing. The red-edge and
coastal blue bands appear to contribute the most to improved vegetation mapping
capability over high-resolution satellite sensors that employ only four spectral bands.

1. Introduction

Coastal wetlands are valuable resources that provide essential habitat for freshwater,
estuarine, and marine species, buffer shorelines, export organic carbon to estuaries, and
influence biogeochemical cycles (Nixon 1980; Costanza, Farber, and Maxwell 1989;
Hopkinson 1985; Farber 1987; Knutson et al. 1981, 1982). Despite their important
ecological role and the value they provide to society, coastal wetlands are threatened by
increased populations and development in coastal regions. It has been estimated that
worldwide, over one-third of people live within 100 kilometres of the coast (Cohen
et al. 1997). In the USA, coastal areas are currently developing more rapidly than any
other part of the country (Crossett et al. 2004). Understanding the impact of such
development is essential to determine how to best protect existing coastal resources and
guide the restoration of degraded ecosystems. Remote sensing provides an opportunity to
monitor large-scale patterns and changes to coastal ecological systems that can be difficult
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to assess at the field scale, and is thus an extremely valuable tool in guiding the protection
and restoration of coastal wetlands.

Coastal wetlands present unique challenges for remote sensing because they are
composed of highly diverse mixed vegetation (Adam, Mutanga, and Rugege 2010).
This is particularly true of brackish and freshwater marshes, where plant community
composition is not as severely limited by salinity stress as in salt marshes (Odum 1988).
In addition, annual species are common in tidal freshwater marshes and many of the
perennial forbs that inhabit these marshes die back to the sediment each year, creating
considerable seasonal and annual variability in the distribution and abundance of indivi-
dual species (Odum 1988; Pasternack, Hilgartner, and Brush 2000). The phenology of
freshwater marsh species commonly results in a seasonal pattern of shifting dominance
where perennials are dominant early in the growing season and annuals dominate later in
the growing season after the perennials have reached their peak biomass and begun to
senesce (Johnson, Sasser, and Gosselink 1985; Odum 1988; Doumlele 1981; Whigham
and Simpson 1992; Simpson et al. 1983). In coastal river deltas, this seasonality is further
complicated by the spring flood cycle, which controls spring and early summer water
levels and thus the timing of species germination and re-sprouting in the early growing
season (Johnson, Sasser, and Gosselink 1985).

Many marsh species are spectrally similar to one another, making separation of unique
signatures difficult if only a few broad spectral bands are available for classification
(Ozesmi and Bauer 2002). The presence of water interspersed with the vegetation
dampens the overall reflectance values and further diminishes separability of individual
species (Adam, Mutanga, and Rugege 2010; Silva et al. 2008). This factor is further
complicated by daily and seasonal changes in water level (Ozesmi and Bauer 2002).
Submerged aquatic vegetation, which is common in the understory of emergent wetlands,
contributes further spectral confusion.

Most of the earliest attempts to map coastal wetlands involved visual interpretation of
colour infrared aerial photography (Ozesmi and Bauer 2002; Adam, Mutanga, and
Rugege 2010). Although many of these studies achieved moderate accuracy, particularly
with respect to mapping coarse wetland classes, the process is time-intensive and subject
to considerable inconsistency related to variability of interpretation and human error
(Ozesmi and Bauer 2002). The poor spectral resolution of aerial photography also limits
its ability to distinguish the unique spectral responses of individual species (Adam,
Mutanga, and Rugege 2010). More recently, remote-sensing researchers have explored
automated classification techniques to map wetlands using medium- and high-resolution
satellite imagery and satellite and airborne hyperspectral imagery. Although hyperspectral
imagery has generally produced the most accurate maps of coastal wetland vegetation, this
technology is still relatively expensive and largely inaccessible to coastal wetland man-
agers. High-resolution satellite imagery has been demonstrated to provide classifications
that are nearly as accurate at significantly reduced cost.

WorldView-2 (WV-2) is a commercial high spatial resolution satellite that was
launched by the company DigitalGlobe in 2009. It provides 2 m imagery in eight spectral
bands, including four spectral bands not available in earlier high-resolution multispectral
satellite sensors: coastal blue (400–450 nm), yellow (585–625 nm), red-edge (705–
745 nm), and a second band in the near-infrared portion of the light spectrum (860–
1040 nm). The coastal blue band corresponds to the range of maximum penetration of the
water column and is expected to improve bathymetric mapping of shallow coastal
environments and submerged vegetation (Marchisio, Pacifici, and Padwick 2010; Collin
and Planes 2011; Collin and Hench 2012). The yellow band corresponds to the absorption
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range of minor plant pigments that become important in the fall as chlorophyll production
drops, and may be valuable for mapping vegetation undergoing stress or senescence
(Jensen 2007; Carter 1993; Carter, Cibula, and Miller 1996). The red-edge region of the
spectrum represents the transition zone between high absorption by chlorophyll in the red
region and high reflection by the spongy mesophyll cells in the near infrared region, and
measuring reflectance in this region should improve vegetation classification and esti-
mates of chlorophyll content, biomass, and leaf area index (Jackson 1986; Gates et al.
1965; Gitelson and Merzlyak 1994; Gitelson, Merzlyak, and Lichtenthaler 1996).

In this study, we apply maximum likelihood classification (MLC) and support vector
machine (SVM) classification to map freshwater marsh species distributions using WV-2
imagery of a small river delta in coastal Louisiana, USA. The specific objectives of this
study are to: (1) evaluate the value of WV-2 high spatial resolution multispectral satellite
imagery for monitoring plant community composition in coastal freshwater marshes, (2)
compare the use of MLC and SVM classifiers for mapping freshwater marsh vegetation
using high-resolution satellite imagery, (3) evaluate the benefit of WV-2’s new spectral
bands for mapping freshwater marsh vegetation, and (4) compare WV-2 to other available
high-resolution satellite sensors for mapping freshwater marsh vegetation.

2. Methods

2.1. Study area

The Wax Lake delta is a naturally evolving young delta of the Atchafalaya River, a major
distributary of the Mississippi River in southern Louisiana, USA. It is the product of a
diversion of part of the Atchafalaya River through the artificial Wax Lake Outlet and
receives approximately one-third of the flow of the Atchafalaya River. The delta emerged
from Atchafalaya Bay following record floods in the spring of 1973, and by 1997, the
river had built 51.1 km2 of new land in the Wax Lake delta (Roberts et al. 1997). As new
shallow islands emerge, they are colonized by freshwater wetland plants, which trap
additional sediments with their roots and increase elevation (Llewellyn and Shaffer
1993; Shaffer et al. 1992). As elevation increases, additional species are able to invade,
often displacing the initial colonizing species or limiting them to lower elevations
(Johnson, Sasser, and Gosselink 1985; Shaffer et al. 1992). Species richness in the
freshwater Wax Lake delta is relatively high compared with other coastal settings,
providing a good case study to test the applicability of WV-2 satellite imagery and the
use of different classifiers to distinguish between wetland plant species in a spatially
heterogeneous landscape.

2.2. Vegetation classes

We used a WV-2 image of the Wax Lake delta taken on 15 October 2011 to map the
distribution of freshwater marsh plant species within the delta (Figure 1). The following
17 freshwater marsh species/land-cover classes were included in the classification: trees,
Salix nigra seedlings, Colocasia esculenta, Polygonum punctatum, Bidens laevis,
Paspalum dissectum, Typha spp., Phragmites australis, Zizaniopsis miliacea, Nelumbo
lutea, Sagittaria spp., Potamogeton nodosus, other submerged aquatic vegetation (SAV),
Eichhornia crassipes, dead vegetation, water, and bare mudflats. The vegetation classes
that were included in the mapping study represent some of the most dominant species in
the delta and those that were identified during field reconnaissance.

4700 M.V. Carle et al.
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At the highest elevations, along the natural river levees, the trees class is dominated by
S. nigra (black willow), a small- to medium-sized tree with multiple trunks and lanceolate
leaves (Chabreck and Condrey 1979). Other species of hardwood trees are found growing
on dredge spoil disposal levees along the main river channel at the upper end of the delta,
but no attempt was made to distinguish between the S. nigra and these other tree species
for this study. Colocasia esculenta (elephant ear or taro) is an invasive perennial forb that
grows at slightly lower elevations – along the lower levees on younger islands, down the
backside of levees facing the interior of older islands, and in the understory of the willow
community. It has large, heart-shaped leaves (up to 0.6 m) with long (1 m) petioles that
emanate from a starchy underground corm and can reach a maximum height of 2.5 m with
a canopy spread of 2.5 m under ideal growing conditions (Chabreck and Condrey 1979;
NRCS 2013). Commonly found interspersed with C. esculenta or in mixed communities
at high to mid-elevations is P. punctatum (dotted smartweed). Polygonum punctatum is an
annual/perennial herb with branched, trailing stems, linear leaves, and long racemes of
scattered white flowers that can grow to a maximum height of about 1 m under ideal
growing conditions (NRCS 2013; Chabreck and Condrey 1979).

Intermediate elevations within the delta are dominated by a diverse assemblage of
species, many of which are clonal and form large monotypic stands. Included in this
group are B. laevis (smooth beggartick or bur marigold), P. dissectum (mudbank paspa-
lum), Typha spp. (cattails), P. australis (common reed), and Z. miliacea (giant cutgrass).
Bidens laevis is an annual/perennial herb with an upright, bushy growth form and a
maximum height of about 1 m that often forms dense stands in freshwater marshes
(Chabreck and Condrey 1979; NRCS 2013). It grows numerous bright yellow flowers
in the fall (Chabreck and Condrey 1979). Paspalum dissectum is a low-growing perennial
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Figure 1. Location of the Wax Lake delta and reference plots used for accuracy assessment.
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grass that grows to 15–60 cm tall and is locally abundant, forming dense mats in fresh-
water marshes (Chabreck and Condrey 1979). Typha spp. are tall grass-like, perennial
herbs that grow from fleshy creeping rhyzomes. The leaves are narrow and erect and grow
1.2–1.8 m tall (Chabreck and Condrey 1979). At least two Typha spp. are believed to
grow in the Wax Lake delta: Typha latifolia (broadleaf cattail) and Typha angustifolia
(narrowleaf cattail). No attempt was made to distinguish between them for this study.
Phragmites australis is a tall (2.5–3.4 m), perennial, cane-like grass with stout creeping
rhizomes and a plume-like inflorescence that develops in the fall. It typically grows in
dense monotypic stands, often expanding outward in a distinct circular pattern (Chabreck
and Condrey 1979). Zizaniopsis miliacea is a tall, stout perennial grass that grows up to
2.7 m tall under ideal growing conditions and forms dense circular stands in freshwater
marshes (Chabreck and Condrey 1979; NRCS 2013).

Emergent, floating-leaved, and submerged vegetation dominates the lowest elevations
in the Wax Lake delta. Nelumbo lutea (American lotus) is an aquatic, perennial herb with
round, flat leaves 30–60 cm in diameter that can be either floating or emergent. It grows
from rhizomes rooted in the bottom of shallow water areas and stands are capable of rapid
radial expansion of up to 14 m in a single growing season (Hall and Penfound 1944). Two
Sagittaria spp. – Sagittaria latifolia and Sagittaria platyphylla – have historically been
important components of the plant community in the Wax Lake delta, although their
dominance appears to have waned in recent years (Holm and Sasser 2001). Both are
emergent perennial herbs, but S. latifolia is taller, reaching mature heights of up to 1.5 m
compared to less than 1 m for S. platyphylla (NRCS 2013). The leaves of S. latifolia are
arrowhead-shaped whereas those of S. platyphylla are elliptical. No attempt was made to
differentiate the two species for mapping purposes.

Finally, areas within the delta that are continuously flooded are dominated by floating
plants and SAVs. Eichhornia crassipes (water hyacinth) is an invasive free-floating
freshwater aquatic plant that forms dense mats over waterways, blocking light-penetration
of the water column. Small, broken-off mats of E. crassipes are commonly found floating
down the distributary channels in the Wax Lake Delta. It forms large mats in the interiors
of the islands that are moved continuously by wind and tides. The most common SAV in
the delta is P nodosus (longleaf pondweed). It is a rhyzomous perennial aquatic herb with
linear leaves about 5 cm long that float at and just below the water’s surface (NRCS
2013). Because its floating leaves prevent light from penetrating the water column, it often
forms large homogeneous stands. This growth form gives it a unique spectral signature
compared to other SAVs, which allowed it to be mapped as a separate class for this study.
All other SAVs were grouped into a single class for mapping purposes. Other SAV species
present in the delta include Potamogeton pusillus, Potamogeton crispus, Myriophyllum
spicatum, Elodea canadensis, Najas guadalupensis, Zannichellia palustris, Herteranthera
dubbia, and Cerataphylum demersum. These other species are frequently found in mixed
assemblages throughout the delta (Charles Sasser, unpublished data).

2.3. Reference data

Training areas and a stratified random sample of accuracy assessment plots were collected
in the field in late August and early September 2011. Training samples were collected as
monotypic or nearly monotypic stands of each of the vegetation classes with polygons
delineated using a Trimble GeoXH differential global positioning system (DGPS) with
sub-metre accuracy. Accuracy assessment samples were collected by generating a strati-
fied random sample of 400 points using a previously generated classification based on a
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June 2010 WV-2 image of the Wax Lake delta. A total of 85 of these points were visited
in the field, selected based on accessibility by foot or airboat, with the objective of
obtaining adequate representation of each class. For classes that were poorly represented
in the 2010 vegetation map (Z. milacea, P. australis), accessible stands were haphazardly
selected in the field to include in the accuracy assessment. Paspalum dissectum was
excluded from the accuracy assessment because it is found primarily in one isolated area
of the delta and the reference plots were inaccessible, although sufficient non-random
training samples were collected. Eichhornia crassipes was also excluded from the accu-
racy assessment because the floating mats of this species move continuously. At each
accuracy assessment site, percentage cover values were collected at 5% intervals within a
1 m2 sample plot, which was selected such that it was representative of the greater 5 m2

area to account for the 2 m pixel size of the WV-2 data plus any geometric error in the
GPS reading and image registration.

Use of these reference data for the 16 October 2011 WV-2 image was complicated by
Tropical Storm Lee, which passed directly over the Wax Lake delta on 4 September 2011.
This slow-moving storm brought an approximately 4 foot storm surge as measured at the
Wax Lake delta Coastal Reference Monitoring System (CRMS) monitoring site main-
tained by the US Geological Survey and the Coastal Protection and Restoration Authority
of Louisiana (CPRA 2012). This surge carried salt water into the delta that killed much of
the freshwater vegetation growing at low elevations, as evidenced by widespread salt-burn
observed in the delta in the weeks following the storm. In particular, four of the classes
that normally dominate the low elevation areas of the delta – N. lutea, Sagittaria spp.,
P. nodosus, and other SAVs – were greatly reduced in distribution as a result of the storm,
whereas the area of bare mud or sand flats was greatly increased. Because access to the
site was limited for several months following the storm, all training areas collected before
the storm were screened by visual interpretation of the 16 October 2011 WV-2 image,
using a June 2010 WV-2 image and a reference vegetation map created from November
2009 aerial photography as ancillary data. If an insufficient number of the original training
pixels for a given class were usable due to the storm impact, additional training pixels
were selected directly from the image using the ancillary data as reference. To minimize
training error, new training pixels were only selected from areas that were mapped as the
same class in 2009 and 2010 and where visual interpretation of the 2011 image suggested
the vegetation class had not changed. The storm also resulted in a conversion of a high
number of accuracy assessment plots from the lower elevation classes to the ‘bare
sediment’ class. Conversion of these sites was verified by visual interpretation of the 16
October 2011 WV-2 image. As it was impossible to obtain new reference samples for
these classes following the storm, they were under-represented in the final accuracy
assessment data set.

2.4. Classification

The November 2011 WV-2 image of the Wax Lake delta was first converted to at-satellite
reflectance and then both MLC and SVM classifiers were tested to determine which
classifier yielded the most accurate classification of freshwater marsh vegetation using the
WV-2 high-resolution multispectral imagery. All classifications were performed using the
ENVI 5.0 image analysis software package (Exelis VIS 2013). MLC is a very commonly
used classifier for multispectral imagery due to its ease of implementation and wide
availability in popular software packages. However, it assumes that reflectance values
are normally distributed, an assumption that is commonly violated in remote-sensing data,
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particularly where there are multiple subclasses or when classes contain different spectral
features (Kavzoglu and Reis 2008). This problem has led to the recent proliferation of
non-parametric classifiers such as classification trees, neural networks, and SVMs (Zhu
and Blumberg 2002; Kavzoglu and Reis 2008; Otukei and Blaschke 2010; Friedl and
Brodley 1997). Of these, SVMs have most often demonstrated superior thematic classi-
fication accuracy (Sanchez-Hernandez, Boyd, and Foody 2007; Huang, Davis, and
Townshend 2002; Kavzoglu and Colkesen 2009; Dixon and Candade 2008; Pal and
Mather 2005; Foody and Mathur 2004).

SVMs are a group of machine learning techniques based on statistical learning theory.
They separate classes by identifying the optimal linear decision surface (the optimal
hyperplane) that creates the largest distance, or margin, between the vectors for the two
classes. In situations where the training sets for the classes are not linearly separable, the
data must first be projected into a higher dimensional space where they are linearly
separable (Pal and Mather 2005). This is most often accomplished using kernel functions,
of which the polynomial and radial bias function (RBF) have been the most commonly
adopted for remote-sensing applications (Kavzoglu and Colkesen 2009; Huang, Davis,
and Townshend 2002). We tested both RBF and polynomial kernels to determine which
provided superior classification accuracy. To determine the optimal parameters for this
study area, classification trials were performed using parameter ranges used in previous
studies in other settings (Kavzoglu and Colkesen 2009; Huang, Davis, and Townshend
2002; Pal and Mather 2005). For the RBF kernel, gamma was varied from 0.01 to 7 and
the penalty parameter was varied from 10 to 10,000. For the polynomial kernel, poly-
nomial order was varied from 2 to 6 and the penalty parameter was again varied from 10
to 10,000. The ENVI SVM classification module employs the pairwise approach to
extend binary SVM classification to multiclass problems.

Apart from evaluating the value of the full eight-band imagery for mapping freshwater
wetland vegetation, we also evaluated the contribution of the new coastal blue, yellow,
and red-edge bands by performing MLC after sequentially removing each of these bands.
Additional classifications were performed at degraded resolutions and with decreased
band combinations to compare the results of the 2 m, eight-band WV-2 imagery to results
obtainable using other high-resolution satellite sensors. To simulate IKONOS and
OrbView-3 data, the WV-2 image was resampled to 4 m spatial resolution and only
bands 2 (red), 3 (green), 5 (red), and 7 (near infrared) were used. The same band
combination was used to simulate QuickBird data, but the image was resampled to 2.4 m.

Accuracy assessment results were summarized in an error matrix and overall map
accuracy, kappa values, and individual class user’s and producer’s accuracies were
computed based on the dominant class in each reference plot (Story and Congalton
1986; Stehman 1997; Richards 1996; Congalton 1991). The statistical significance of
differences in overall map accuracy was tested using the McNemar test (Foody 2004).

3. Results

3.1. SVM parameter optimization

For the RBF SVM classification trials, varying gamma from 0.01 to 7.0 resulted in only a
slight decrease in classification accuracy for gamma values greater than 1 (Figure 2). For
gamma values below 1, overall classification accuracy was 68% (kappa = 0.63) and for
gamma values above 1, overall accuracy dropped to 67% (kappa = 0.62). Accuracy
among the vegetation classes remained constant at 55% (kappa = 0.48) for all values of
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kappa tested (Figure 2(a)). Unsurprisingly, the McNemar test results indicated that there
were no significant differences in classification accuracy among the kappa trials. The
ENVI default kappa value of 0.125 was therefore selected for the remainder of the SVM
classifications. Varying the penalty parameter resulted in a slight increase in classification
accuracy from an overall accuracy of 67% (kappa = 0.62) when the penalty parameter was
set to 10 to an overall accuracy of 71% (kappa = 0.67) when the penalty parameter was set
to 10,000 (Figure 2(b)). There was a greater increase in the accuracy of the vegetation
classes from 54% (kappa = 0.46) to 65% (kappa = 0.59) over the same range. However,
the McNemar test results indicated that none of these differences in classification accuracy
were significant at the 0.05 probability level.

For the polynomial SVM classification, varying the polynomial order from 2 to 6
resulted in an increase in overall classification accuracy from 67% (kappa = 0.62) to 71%
(kappa = 0.67) and an increase in vegetation class accuracy from 55% (kappa = 0.48) to
63% (kappa = 0.57) (Figure 3(a)). The results of the McNemar tests indicated that
differences in classification accuracy among SVM classifications with different polyno-
mial orders were not significant at the 0.05 probability level. A polynomial order of 6 was
selected for the remaining polynomial parameter trials because it resulted in the highest
overall accuracy, although the differences in accuracy were not statistically significant.
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Varying the penalty parameter from 10 to 10,000 resulted in an increase in overall
classification accuracy from 67.9 (kappa = 0.64) to 73.8 (kappa = 0.70) and an increase
in vegetation class accuracy from 57.4 (kappa = 0.51) to 67.3 (kappa = 0.62)
(Figure 3(b)). Based on the McNemar test, the classification accuracy was significantly
greater using penalty values of 1000 or 10,000 as opposed to 10, but classification
accuracy at a penalty value of 100 was not significantly different from the accuracies
for smaller or larger penalty values.

Based on these trials, the highest overall classification accuracy of 73.8 was achieved
for the SVM classification using the polynomial kernel with an order of 6 and a penalty
value of 10,000.

3.2. Comparing MLC and SVM classifications

Overall classification accuracy for the MLC classification was 75%, with a kappa value of
0.71 (Table 1). When only the vegetation classes were considered, classification accuracy
was 71.7% (kappa = 0.71). Producer’s accuracy ranged from 0% for B. laevis to 100% for
P. punctatum, N. lutea, and water. User’s accuracy ranged from 0% for B. laevis to 100%
for C. esculenta, P. australis, other SAVs, and water. User’s accuracies greater than or
equal to 70% were found for seven classes: S. nigra (89%), C. esculenta (100%), Typha
spp. (75%), P. australis (100%), other SAVs (100%), water (100%), and bare/mudflat
(93%). Producer’s accuracies greater than or equal to 70% were found for the following
six classes: S. nigra (89%), P. punctatum (100%), N. lutea (100%), other SAVs (75%),
water (100%), and bare/mudflat (70%).

The confusion matrix for the MLC classification (Table 2) indicates that there is a high
incidence of misclassification of other vegetation classes as P. punctatum. The classes
most commonly confused with P. punctatum were C. esculenta, Typha spp., and

Table 1. Comparison of SVM and MLC classification accuracy.

SVM MLC

Class
User’s

accuracy (%)
Producer’s

accuracy (%)
User’s

accuracy (%)
Producer’s

accuracy (%)

Salix nigra 81.8 100.0 88.9 88.9
Colocasia esculenta 88.9 66.7 100.0 66.7
Polygonum puncatum 56.3 81.8 50.0 100.0
Bidens laevis NA NA 0.0 0.0
Typha spp. 33.3 14.3 75.0 42.9
Zizaniopsis miliacea 16.7 33.3 25.0 33.3
Phragmites australis 50.0 50.0 100.0 50.0
Nelumbo lutea 71.4 100.0 60.0 100.0
Other SAVs 100.0 75.0 100.0 75.0
Water 100.0 100.0 100.0 100.0
Bare/mudflat 93.3 77.8 93.3 70.0
Overall accuracy (%) 73.8 75.0
Kappa 0.70 0.71
Vegetation accuracy (%) 67.3 71.7
Vegetation kappa 0.62 0.66
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Z. miliacea. Another frequent source of classification error was the misclassification of
bare/mudflat areas as vegetation, particularly Z. miliacea and P. punctatum.

Overall classification accuracy for the best SVM classification was 71%, with a kappa
value of 0.67. User’s accuracies ranged from 14% for Z. miliacea to 100% for other SAVs
and water. User’s accuracies greater than 70% were found for the following five classes:
S. nigra (82%), C. esculenta (89%), other SAVs (100%), water (100%), and bare/mudflat
(93%). Producer’s accuracies ranged from 14% for Typha spp. to 100% for S. nigra,
N. lutea, and water. Six classes had producer’s accuracies greater than 70%: S. nigra
(100%), P. punctatum (73%), N. lutea (100%), other SAVs (75%), water (100%), and
bare/mudflat (74%).

Although overall accuracy was higher for the MLC classification, the McNemar test
results indicate that the difference in classification accuracy is not statistically significant.
The two classifiers differed in their estimation of the areal extent of each of the vegetation
classes. The MLC classification mapped greater areas of Z. miliacea, P. nodosus,
P. punctatum, P. australis, N. lutea, and dead vegetation, whereas the SVM classification
mapped greater areas of S. nigra seedlings, Sagittaria spp., P. dissectum, other SAVs,
E. crassipes, and C. esculenta (Figures 4 and 5).

3.3. Contribution of the new spectral bands

Table 3 demonstrates the change in classification accuracy associated with each of the
four new spectral bands employed by the WV-2 sensor. The exclusion of the red-edge
band (band 6) had the greatest impact on classification accuracy, both at the level of

(a)

0 1.5 3 km 0 1.5 3 km

0 0.3 0.6 km0 0.3

Zizaniopsis miliacea Salix nigra seedling Phragmites australis Eichhornia crassipes Bare/mudflats

Dead vegetation

Colocasia esculenta

Bidens laevis

Paspalum dissectum

Nelumbo lutea

Other SAVs

Water

Trees

Typha spp.

Sagittaria spp.

Potamogeton nodosus

Polygonum punctatum

0.6 km

(b)

(c) (d)

Figure 4. Comparison of SVM and MLC classification maps: (a) and (c) SVM classification,
(b) and (d) MLC classification.
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overall accuracy and among the vegetation classes in particular. Removing this band
decreased overall classification accuracy by approximately 6 percentage points and
vegetation class accuracy by nearly 10 percentage points. The coastal blue band
(band 1) had the second largest contribution to classification accuracy in this coastal
deltaic system, with its removal resulting in a decrease in overall accuracy of 3.6
percentage points and a decrease in vegetation class accuracy of 5.7 percentage points.
The second NIR band (band 8) contributed minimally to classification accuracy, with its
removal resulting in only a 1.2 percentage point decrease in overall accuracy and a 1.9
percentage point decrease in vegetation class accuracy. Surprisingly, removing the yellow
band (band 4) resulted in no decrease in either overall or vegetation class accuracy for this
system. Although these differences in classification accuracy are substantial, the
McNemar test results indicated that they are not statistically significant at the 0.05
significance level, both in comparison to the full eight-band WV-2 classification and
among each other.

3.4. Comparison to other high-resolution sensors

Table 4 shows the results of comparison between the full eight-band WV-2 imagery and
simulated imagery from the QuickBird, IKONOS, and OrbView-3 sensors. Reducing the
WV-2 image to the four bands used by the QuickBird sensor and degrading the spatial

Figure 5. Distribution of area among classes for SVM and MLC classifications.

Table 3. Change in classification accuracy associated with the new bands in the WorldView-2
sensor.

All classes Vegetation classes

Trial Overall accuracy (%) Kappa Overall accuracy (%) Kappa

All Eight Bands 75.0 0.71 71.7 0.66
Minus Band 1 (coastal blue) 71.4 0.67 66.0 0.60
Minus Band 4 (yellow) 75.0 0.71 71.7 0.66
Minus Band 6 (red-edge) 69.1 0.65 62.3 0.56
Minus Band 8 (IR) 73.8 0.70 69.8 0.64
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resolution to 2.4 m resulted in a nearly 5 percentage point decrease in overall classifica-
tion accuracy and a decrease of over 8 percentage points for the vegetation classes.
Further degrading the spatial resolution to 4 m to simulate the IKONOS and OrbView-3
sensors resulted in an additional loss of 1 percentage point for overall accuracy and nearly
4 percentage points for vegetation class accuracy. The results of the McNemar tests
indicated that the difference in classification accuracy between the reduced-band and
degraded spatial resolution classifications was not significantly different from the classi-
fication based on the full eight-band WV-2 data at the 0.05 significance level.

4. Discussion

The results of these SVM classification kernel parameter trials differ from those of
previous studies, highlighting the importance of optimizing the kernel parameters to
each individual imagery source, study area, and classification task when performing
SVM classification. In this study, we found that the polynomial kernel with an order of
6 and penalty value of 10,000 gave optimal results when using WV-2 satellite data to map
vegetation at the species level in a deltaic, freshwater marsh setting with sharp species
zonation. The different results obtained by authors of previous studies likely relate to
differences in the number of available bands, spatial scale, and classification scale or
degree of class heterogeneity in those studies. Huang, Davis, and Townshend (2002)
found that the accuracy of SVM classification using the polynomial kernel increased as
order increased from 1 to 8, similar to what was found in this study. They attributed this
effect of polynomial order to the small number of variables (imagery bands) used in their
studies. As this study also used few input bands compared to hyperspectral imagery, our
results further support those conclusions. Huang, Davis, and Townshend (2002) observed
an increase in classification accuracy using the RBF kernel when gamma was increased
from 1 to 7.5. In this study, no significant impact of gamma on classification accuracy was
observed over the same range of values.

Many previous studies have achieved the greatest classification accuracy with the
SVM classifier using the RBF kernel. Pal and Mather (2005) found that the RBF kernel
with a gamma value of 2 and penalty value of 5000 resulted in optimum classifier
performance both for mapping agricultural crops using Landsat ETM+ data and for
mapping broad land-cover classes (e.g. vineyards, hydrophytic vegetation, pasture,
urban) using hyperspectral imagery. Kavzoglu and Colkesen (2009) also found that the
RBF kernel provided superior classification accuracy for mapping broad land-cover
classes using Landsat ETM+ and Terra ASTER imagery. They found that a gamma
value of 3 and a penalty parameter of 250 were optimal for the RBF kernel using the
Landsat ETM+ image but a gamma value of 1 and penalty parameter of 245 produced

Table 4. Comparison to other high-resolution sensors.

All classes Vegetation classes

Trial Overall accuracy (%) Kappa Overall accuracy (%) Kappa

All eight bands, 2 m (WorldView-2) 75.0 0.71 71.7 0.66
4 Band, 2.4 m (QuickBird) 70.2 0.66 62.3 0.56
4 Band, 4 m (IKONOS, OrbView-3) 69.1 0.64 58.5 0.51
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optimal results using the ASTER imagery, further supporting the need to optimize each
kernel to the specific imagery and classification task at hand. However, not all previous
studies have favoured the RBF kernel – Dixon and Candade (2008) obtained optimal
results for Landsat TM 5 data using the polynomial kernel with an order of 3 and penalty
value of 1000, suggesting that optimal kernel choice is also highly variable among
remote-sensing applications.

Our finding that the MLC classifier performed as well as or better than the SVM
classifier differs from the findings of most other remote-sensing studies, in which SVM
has been shown to be superior to MLC in a wide variety of settings and using imagery
ranging from moderate-resolution satellite imagery (Landsat and ASTER) to high-resolu-
tion hyperspectral imagery (Huang, Davis, and Townshend 2002; Kavzoglu and Colkesen
2009; Dixon and Candade 2008; Pal and Mather 2005; Boyd, Sanchez-Hernandez, and
Foody 2006). The source of this discrepancy likely lies in the statistical distribution of
reflectance values in each spectral band for each of the target classes. The SVM classifier
frequently outperforms the MLC classifier because it does not require that the reflectance
values for the individual classes be normally distributed. Many mapped land-cover classes
consist of multiple materials or subclasses with different spectral properties, resulting in
bimodal or multimodal distributions. Bimodal or multimodal reflectance distributions are
particularly common when coarse land-cover classes are used relative to the spatial
resolution of the sensor. In this study, the plant species mapped grow in relatively
monotypic stands, resulting in reflectance distributions that are better approximated by
the Gaussian normal distribution (Figure 6). This makes use of the MLC classifier
appropriate, particularly given its easier implementation compared to the SVM parameter,
as it does not require kernel optimization. The classes that were poorly classified by the
MLC classifier were those that either were potentially poorly trained due to Tropical
Storm Lee (Z. mileacea, Typha spp.) or those that tend to grow in mixed stands with other
unclassified species present as subdominants. The latter case is exemplified by
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Figure 6. Histograms showing the distribution of reflectance values for Salix nigra, Colocasia
esculenta, Polygonum punctatum, and Typha spp. in WV-2 bands 1, 3, 5, and 6.
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P. punctatum, which was frequently over-mapped at the expense of C. esculenta, Typha
spp., and Z. mileacea. The P. punctatum class is the most heterogeneous class included in
the classification. Several unclassified species that are rarely dominant over large areas of
the delta (e.g. Leersia oryzoides, Panicum hemitomon, Vigna luteola) are present as
subdominants in the Polygonum community and can lead to classification error when
they are also subdominant in other classes, particularly since they were more likely to be
included in the training areas for P. punctatum than for the other classes. Closer examina-
tion of the misclassified accuracy assessment points indicates that most of the points
misclassified as P. punctatum were highly mixed, with 40% or more combined cover
values for unclassified subdominant species. V. luteola was also present at some of the
misclassified sites. V. luteola is a vine that creates a dense layer covering the herbaceous
marsh vegetation, blocking reflectance from the species that would be considered domi-
nant based on cover values alone. It is therefore unsurprising that the presence of this
species would increase classification error and future mapping studies should include this
species as a separate vegetation class.

The results of this study compare favourably to other studies where high-resolution
satellite imagery has been used to map coastal vegetation. Collin and Planes (2011)
achieved kappa values greater than 0.9 for both artificial neural network (ANN) and
SVM classification of WV-2 imagery, including specific tree species as well as broader
vegetation classes such as ‘bush’ and ‘grass’. The lower classification accuracy in this
study is most likely due to our nearly exclusive focus on individual species, without the
inclusion of broader mixed classes. Whereas overall classification accuracy and kappa
values were diminished by several classes that might have been poorly trained due to
interference by Tropical Storm Lee, class-specific user’s and producer’s accuracies greater
than 90% were found for several species. Immitzer, Atzberger, and Koukal (2012)
similarly found user’s accuracies ranging from 57% to 92% and producer’s accuracies
ranging from 33% to 94% for individual tree species using WV-2 data. Belluco et al.
(2006) achieved overall accuracies of greater than 95% when classifying salt marsh
species using high spatial resolution QuickBird and IKONOS imagery. However, salt
marsh plant zonation tends to be much stricter along tidal inundation gradients than the
zonation observed among freshwater species in the Wax Lake delta, allowing for greater
species-level classification accuracy. The accuracies achieved in this study also compare
favourably to the accuracies achieved for species-specific classifications using hyperspec-
tral imagery (Belluco et al. 2006; Filippi and Jensen 2006; Hirano, Madden, and Welch
2003), but at significantly reduced cost.

In general, bands 1 (coastal blue), 6 (red-edge), and 8 (second IR) resulted in slight
increases in overall classification accuracy compared to trials where they were removed
prior to classification, although the differences in classification accuracy were not statis-
tically significant based on the McNemar test. The red-edge band contributed the most to
both increased overall classification accuracy and accuracy of the vegetation classes,
specifically. Unsurprisingly, its impact was greater on vegetation class accuracy than on
overall accuracy. Previous studies have indicated that spectral information in the red-edge
portion of the light spectrum may be particularly valuable for separating coastal marsh
species (Artigas and Yang 2006), and our results support that assertion. The coastal blue
band was second in terms of its contribution of increased accuracy, followed by the
second IR band. Removal of the yellow band, however, resulted in no change in
classification accuracy for this particular application. This is surprising because the yellow
band corresponds to the absorption band for minor plant pigments that become more
important during senescence and the image use for this analysis was taken in October.
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However, the growing season is quite long in coastal Louisiana with the average first fall
freeze not occurring until early December (LOSC and SRCC 2013). It is possible that the
influence of the yellow band would be more apparent for imagery taken during November
or December, in this particular climate.

The additional four bands in the WV-2 sensor do appear to provide greater discrimi-
nating power for freshwater wetland vegetation compared to other available 4-band high-
resolution satellite sensors such as QuickBird, IKONOS, and OrbView-3. The inclusion of
the four additional bands resulted in a 5% increase in overall accuracy, compared to the
spectrally degraded data set, and a 9.4% increase in accuracy among the vegetation
classes. The enhanced spatial resolution of the WV-2 sensor is less important for mapping
coastal marsh vegetation at the species-level – spatially degrading the data set to 4 m
spatial resolution to mimic IKONOS and OrbView-3 resulted in only a marginal decrease
in classification accuracy compared to the spectrally reduced 2 m data set designed to
mimic Quickbird. Overall, these results indicate that WV-2 imagery provides better results
for mapping the distribution of freshwater marsh species than other available high-
resolution satellite sensors, largely as a result of the addition of the red-edge and, to a
lesser extent, the coastal blue bands.

5. Conclusions

As this study demonstrates, the combination of eight spectral bands of information and high
spatial resolution makes the new WV-2 satellite well suited to mapping diverse and
heterogeneous coastal wetland systems such as the Wax Lake delta. An overall classifica-
tion accuracy of 75% was achieved and individual user’s and producer’s accuracies greater
than 70% were achieved for many species. These accuracies exceed species-specific
mapping results found using four-band high-resolution satellite sensors such as IKONOS
and QuickBird and rivals those found using satellite and airborne hyperspectral sensors but
at lower acquisition cost and with reduced processing time and effort. The red-edge and
coastal blue bands contributed the most to increased mapping accuracy and the combination
of all eight spectral bands provided greater classification accuracy than when only the four
more common bands were used. Surprisingly, the exclusion of the yellow band had no
impact on classification accuracy in this instance. This is likely because most of the mapped
plant species had not yet begun to senesce at the time of image acquisition. Further studies
performed using imagery timed to maximize variability in the degree of senescence between
species would provide a better measure of the potential benefit of this band.

Contrary to several previous studies, the parametric MLC classifier provided as high or
higher map accuracy than the non-parametric SVM classifier for this particular mapping
application. The favourable performance of theMLC classifier in this study is likely a result of
the fairly homogenous composition of the target classes at the 2 m spatial scale and hence
relatively normal distribution of the reflectance values for each class in each of the spectral
bands. The SVM classifier has become increasingly popular due to its ability to handle
remote-sensing data that violate the assumption of normality that is implicit in parametric
classifiers such as MLC. However, the SVM classifier requires substantially more effort due
to the need to optimize kernel and parameter selection for each remote-sensing application and
computing time can be extensive depending on the parameter values selected and the
resolution of the imagery. The results of this study suggest that the simpler MLC classifier
is adequate for mapping individual plant species using high spatial resolution imagery in a
river delta setting with a high degree of species zonation.
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